
Frontiers in Microbiology 01 frontiersin.org

The devil is in the details: 
Variable impacts of season, BMI, 
sampling site temperature, and 
presence of insects on the 
post-mortem microbiome
Aaron M. Tarone 1, Allison E. Mann 2,3, Yan Zhang 2, 
Roxanne R. Zascavage 2, Elizabeth A. Mitchell 2, Edgar Morales 2, 
Travis W. Rusch 1,4 and Michael S. Allen 2*
1 Department of Entomology, Texas A&M University, College Station, TX, United States, 2 Department 
of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort 
Worth, TX, United States, 3 Department of Biological Sciences, Clemson University, Clemson, SC, 
United States, 4 Center for Grain and Animal Health Research, USDA Agricultural Research Service, 
Manhattan, KS, United States

Background: Post-mortem microbial communities are increasingly 

investigated as proxy evidence for a variety of factors of interest in forensic 

science. The reported predictive power of the microbial community to 

determine aspects of the individual’s post-mortem history (e.g., the post-

mortem interval) varies substantially among published research. This 

observed variation is partially driven by the local environment or the individual 

themselves. In the current study, we investigated the impact of BMI, sex, insect 

activity, season, repeat sampling, decomposition time, and temperature on the 

microbial community sampled from donated human remains in San Marcos, 

TX using a high-throughput gene-fragment metabarcoding approach.

Materials and methods: In the current study, we investigated the impact 

of BMI, sex, insect activity, season, repeat sampling, decomposition time, 

and temperature on the microbial community sampled from donated 

human remains in San Marcos, TX using a high-throughput gene-fragment 

metabarcoding approach.

Results: We found that season, temperature at the sampling site, BMI, and 

sex had a significant effect on the post-mortem microbiome, the presence 

of insects has a homogenizing influence on the total bacterial community, 

and that community consistency from repeat sampling decreases as 

the decomposition process progresses. Moreover, we demonstrate the 

importance of temperature at the site of sampling on the abundance of 

important diagnostic taxa.

Conclusion: The results of this study suggest that while the bacterial 

community or specific bacterial species may prove to be useful for forensic 

applications, a clearer understanding of the mechanisms underpinning 

microbial decomposition will greatly increase the utility of microbial evidence 

in forensic casework.
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Introduction

Post-mortem microbiomes have been studied intensively since 
the advent of next generation sequencing in the context of forensic 
science, medicine, and decomposition ecology since they are 
informative of a variety of factors associated with death 
investigations, the physiological states of the previously living, and 
ecosystem functions (Metcalf et  al., 2013; Pechal et  al., 2014; 
Cobaugh et al., 2015; Singh et al., 2018; Kaszubinski et al., 2020). 
There is experimental evidence indicating that microbial data can 
provide information associated with post-mortem intervals (PMI), 
locations of death, and causes of death (Can et al., 2014; Finley et al., 
2015; Metcalf et al., 2016; Pechal et al., 2018; Zhang et al., 2019). In 
post-mortem microbiome work, the general concept is that a 
decedent is a microbial ecosystem that will undergo a predictable 
succession of community members over time. Across experiments, 
certain taxa at the phyletic (e.g., Gammaproteobacteria, 
Bacteroidetes, Actinobacteria; Pechal et al., 2013; Adserias-Garriga 
et  al., 2017), family (e.g., Moraxellaceae, Enterobacteriaceae, 
Planococcaceae; Pechal et  al., 2014), or generic (e.g., Proteus, 
Ignatzschineria, Clostridia; Metcalf et  al., 2016) levels occur in 
different abundances depending on whether samples are collected 
early or later in the decomposition process.

While there is a general indication that there are reliable 
temporal signals in microbiome community data, it is also clear 
that more needs to be understood before microbiomes are ready 
for forensic applications (Metcalf, 2019). For example, some post-
mortem microbiome studies indicate the ability to predict the 
post-mortem interval (PMI) with approximately 90% accuracy 
(Belk et  al., 2018), while others predict approximately 71% 
accuracy (Pechal et al., 2018; Zhang et al., 2019). Some of the 
differences between such experiments could be due to sample size, 
differences in regions (e.g., temperature or presence of pollutants), 
or related to experimental design and methodologies. However, 
ecological factors like seasonal impacts on post-mortem microbial 
communities are also demonstrated (Carter et  al., 2015). This 
observation is important because it implies the need for seasonally 
(and other) adjusted predictions with microbiome data. However, 
while seasonal effects are evident, a mechanistic understanding of 
their underpinnings remains to be fully appreciated.

One obvious explanation for seasonal variation in microbiomes 
is that seasons differ in temperature. This is a special variable, in that 
it is the only one that is regularly accounted for in current approaches 
to studying post-mortem microbiomes. However, even in this 
instance of clear importance, there is room for improvement when 
making forensic estimates with post-mortem microbiome 
community data. Most forensic prediction studies adjust for 
temperature-specific growth rates by applying accumulated degree 

models to community data. Usually these are derived from a simple 
assumption that microbial growth generally does not occur below 
0°C and that the response to temperature increases is linear (Pechal 
et al., 2014; Belk et al., 2018). However, basic thermal biology makes 
it clear that this is not expected to be  the case for any group of 
organisms (Angilletta, 2009). Organismal performance exists within 
a range of operable temperatures. The response is curvilinear, with 
an optimal temperature that typically is closer to the critical thermal 
maximum than the critical thermal minimum. Most importantly, 
the range of temperatures that can be survived, and the temperatures 
at which a linear relationship between temperature and performance 
exist, are phenotype and organism (and even sometimes genotype) 
dependent (Figure  1). Thus, while estimates are made with 
communities of microorganisms, the thermal assumptions about 
these organisms are not equally valid across all members of the 
community. There is a good reason why this practice of assuming the 
same base temperature for an entire community exists - there is 
currently no better set of assumptions that can be  applied to a 
community of bacteria for this purpose. However, basic thermal 
biology can explain seasonal effects on predictions, and predicts that 
certain temperatures may be more prone to inaccuracy than others 
when a specific reference data set (collected at a specific temperature 
range) is applied. While temperature is clearly an important factor in 
estimates with microbiomes, other seasonally variable factors could 
also impact the results (Singh et al., 2018).

In addition to the fact that thermal variation may impact post-
mortem microbiomes, there are also demonstrated impacts of insect 
colonization (Pechal et al., 2013; Iancu et al., 2015, 2020; Tomberlin 
et al., 2017), which themselves can differ across seasons. For example, 
Ignatzschineria is a known marker taxon during early decomposition 
(Metcalf et al., 2016). However, it is also known to be associated with 
insect colonization. In the absence of this taxon, other genera, such 
as Proteus proliferate in the same time frame (Tomberlin et al., 2017). 
Recently, the genus has been suggested as a marker of insect 
colonization of remains (Iancu et al., 2020). Carrion feeding insects 
are known to alter their microbiomes through their own excretions 
and secretions (Sherman et al., 2000; Cazander et al., 2009; Barnes 
et al., 2010), which include immune peptides (Nygaard et al., 2012), 
symbiont microbes (Shukla et al., 2018), and microbial products 
(Erdmann and Khalil, 1986; Sherman et al., 2000). For example, the 
carrion fly Lucilia sericata exhibits an expanded repertoire of 
antimicrobial peptides compared to Drosophila genomes (Pöppel 
et al., 2015). This fly expresses distinct antimicrobial peptide profiles 
in the presence of different bacteria (McKenna et al., 2022). Further, 
blow fly associated Proteus mirabilis make phenolic compounds 
dubbed “mirabilicides” that are toxic to other microbes (Erdmann 
and Khalil, 1986). Thus, it is not surprising that the presence of 
Proteus mirabilis in fly guts has been shown to alter levels of 
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Salmonella enterica serovar Typhimurium (Greenberg, 1969). Insect 
communities change throughout the year (Tomberlin and Adler, 
1998; Cammack et  al., 2016), thus seasonal communities could 
impact seasonal microbiomes on remains if the differing taxa 
interact with microbes differently. Finally, other individual-specific 
factors such as body mass index (BMI) and biological sex may also 
shape the microbes involved in decomposition (Pechal et al., 2018; 
Singh et al., 2018; Zhang et al., 2019). For example, Singh et al. (2018) 
noted that some Gammaproteobacteria signatures in soil under 
remains was positively correlated with cadaver starting mass.

To address whether post-mortem microbiome seasonality is 
due to insects, temperature, or other factors, we  evaluated 
microbiomes from donated human remains that had decomposed 
for seven to 272 days in San Marcos, TX. During collections, we 
recorded BMI and sex of the deceased from associated donation 
data, if insects were present at swabbing sites, and recorded 
temperatures of collection sites to determine if these factors 
impacted the microbiomes of decomposing remains and the 
temporal signals associated with them.

Materials and methods

Experimental design

We collected nostril swabs from twenty deceased individuals 
located at the Forensic Anthropology Center, Texas State 
University, San Marcos, TX during two seasons. Ten individuals 
each were sampled during the summer (July 19, 2019) and winter 

(February 26, 2019). Each individual was swabbed four times to 
document intraindividual variation for a total of 80 swabs plus an 
additional two air-exposed blank control swabs per sampling 
season. Surface temperatures at the swab site (in the nostril) were 
collected at the time of sampling using a thermal camera (model 
T650sc ©Teledyne FLIR, USA) and ranged from 24.5°C to 54.5°C 
with an average sample site surface temperature during the 
summer of 43.2°C (SD ± 4.2°C) and an average sample site surface 
temperature in the winter of 31.2°C (SD ± 3.8°C). To test the 
impact of different lysing matrices, 30 swabs were lysed with 
Lysing Matrix A and 29 with Lysing Matrix E (MP Biomedicals, 
Irvine, CA). Along with sampling site temperature, the presence 
of insects at the sampling site (within the nostril), presence on the 
body but not in the nostrils, or absence of insect activity was 
recorded for each individual. Insect activity at the sampling site 
was found in 12 individuals sampled in the summer, and 12 
individuals sampled in the winter. Additionally, the number of 
days since an individual had been introduced to the field was 
recorded. Ranging from seven to 272 days, the average time in the 
field for an individual was 80 days (SD ± 91 days). Finally, Body 
Mass Index (BMI) and sex of each individual was recorded. Full 
metadata for all samples can be found in Supplementary Table 1.

DNA extraction and library preparation

DNA was extracted from 40 summer and 40 winter nasal 
swabs and blanks using the MPBio FastDNA™ SPIN Kit for Soil 
(MP Biomedical, Irvine, CA). The swab heads were aseptically 

A B

FIGURE 1

Expectations for a general phenotypic performance response to temperature for one species. (A) All phenotypes for all organisms exhibit a 
thermal performance range defined by the Critical Thermal Minimum (Ct Min) and Critical Thermal Maximum (Ct Max). Responses are typically 
skewed such that optimal performance is closer to Ct Max than Ct Min. Changes in performance with increasing temperature are usually 
shallower at lower temperatures and steeper at higher temperatures. For some portion of the thermal performance curve the response to 
temperature is relatively linear and can be predicted with simple linear accumulated degree models. The base temperature for such models (below 
which development is assumed to be zero) is defined by the intercept of this linear response with the temperature axis at the point where 
performance is zero. This linear range is a subset of the full thermal performance curve. Outside of this range, thermal predictions can be biased if 
linear models are applied. Organisms often regulate their temperatures by orienting close to, but usually not exactly, their optimal temperatures 
(Opt), which can vary across phenotypes, environments, and genotypes studied. (B) A theoretical distribution of thermal performance for a 
community of organisms, where each species has distinct thermal performance curves, with different thermal minima, maxima, and optima, 
which reveals patterns for thermal specialist or generalist, and where some species may or may not co-occur due to differences in thermal 
performance. The members of the community have different optima, different base temperatures for accumulated degree calculations, and 
different thermal ranges are covered by the linear portions of the thermal responses of individual community members. Such community 
members may be informative of an ecological process in different thermal conditions, but imposing a single thermal assumption on a whole 
community of organisms is more problematic than predictions of one well understood organism.
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transferred to lysing matrix bead tubes and snapped from their 
handles. Two of the four samples taken from each individual were 
processed using Lysing Matrix A, and the remaining two were 
processed using Lysing Matrix E following the MPBio FastDNA 
protocol including homogenization on an MPBio FastPrep 
instrument (6 m/s, 40 s). Extractions were performed as outlined 
by the manufacturer. DNA was eluted into clean, 1.5 ml 
microcentrifuge tubes in DNase free water, quantified using a 
Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA), and 
stored at −20°C until further processing.

The Illumina protocol for 16S rRNA Metagenomic Sequencing 
Library Preparation (Part # 15044223 Rev. B) was used 
for  amplification of the 16S rRNA gene’s V4 region using 
the  515F  (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R 
(5′-GGACTACNVGGGTWTCTAAT-3′) primer set. PCR 
amplification was conducted on all samples in duplicate, however 
only 26 out of 40 winter swabs and 34 out of 40 summer swabs were 
band positive. A positive control of E. coli genomic DNA was 
included in batches as a PCR amplification control. No template 
controls consisting of molecular grade water were also included 
throughout the amplification process and sequenced to assess 
possible contamination. Duplicate positive PCR products from each 
sample were combined prior to post-PCR clean-up using AMPure 
magnetic beads. After cleanup, the PCR products were indexed using 
Illumina Nextera XT Index Kit v2 (Illumina, San Diego, CA) 
following the manufacturer’s instructions and purified again using 
AMPure XP magnetic beads (Beckman Coulter, Chaska, MN). 
Quantification of indexed PCR products was performed using the 
Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA). To avoid 
sampling bias, the samples were separated at random into two 
separate sequencing runs containing a combination of the summer 
and winter samples. Furthermore, the samples chosen had to contain 
one of each of the lysing matrices used for DNA extraction to further 
reduce any sampling bias. The libraries were sequenced using the 
Miseq Reagent V2 (500 cycle) kit. After sequencing and processing, 
an additional two winter sample swabs were removed following QC 
of the sequencing data, leaving 34 summer swabs from 10 remains, 
and 24 winter swabs from 8 remains, for a total of 58 samples 
analyzed here. Each set of remains was covered by at least 2 swabs. 
Further details can be found in Supplementary Table 1.

Quantitative PCR analysis

To determine if shifts in the proportion of different major 
bacterial taxa could be used to estimate the PMI, we performed 
qPCR analysis on a subset of individuals using taxon-specific 
primer sets for the phyla Actinobacteria, Firmicutes, Bacteroidetes, 
and the order Gammaproteobacteria. A total of 18 individuals 
were included (10 summer samples and 8 winter samples). 
Individuals included in this analysis are indicated with an asterisk 
in Supplementary Table 1. We performed qPCR on these samples 
on an Applied Biosystems QuantStudio 5 instrument (Waltham, 
MA) using a SYBR Green (Applied Biosystems, Waltham, MA) 
assay for absolute quantification of all samples following 

modification of a previously published protocol (Yang et al., 2015). 
Briefly, samples were run in duplicate on four plates with each 
plate used to target a single phylum. qPCR was prepared using 
12.5 μl of 2X SYBR master mix, 0.5 μl each of forward and reverse 
primers (200 nM final concentration), 9 μl of water, and 2.5 μl of 
sample. Run parameters were 95°C for 20 s followed by 60°C for 
1 min and repeated for 40 cycles. Raw results were compared to a 
standard curve to determine copy number. Seven point standard 
curves from 102–108 copies were generated using genomic DNA 
template from appropriate bacteria purchased from ATCC 
(Actinobacteria, Cutibacterium acnes ATCC 11828D-5; 
Bacteroides, Bacteroides vlugatus ATCC 8482D-5; 
Betaproteobacteria, Neisseria meningitides ATCC 700532D-5), or 
prepared in-house from bacterial culture (Gammaproteobacteria, 
Aliivibrio fischeri ATCC 7744; Firmicutes, Streptococcus 
pneumoniae ATCC 6308, courtesy of Dr. Harlan Jones). Mean 
results were evaluated for trends that could be further evaluated 
in determining PMI.

Computational methods

DNA sequences were processed as previously described 
(Mann et al., 2020). Briefly, we first removed primers from the raw 
sequence data using Cutadapt (v.2.10; Martin, 2011). Next, 
we  quality filtered, dereplicated, merged paired end reads, 
removed chimeras, and generated amplicon sequence variants 
(ASVs) using the DADA2 pipeline (v.1.14.1; Callahan et al., 2016). 
Samples with fewer than 10,000 reads post quality filtering were 
removed from downstream analysis. Post-filtering, we retained 58 
high-quality samples and generated 2,989 unique ASVs 
(Supplementary Table 2). We assigned a taxonomy to each ASV 
using VSEARCH (v.2.8.1; Rognes et al., 2016) as implemented in 
QIIME2 (2020.8; Bolyen et al., 2019). Any ASVs that could not 
be assigned a taxonomy or were assigned only to the kingdom 
level (i.e., Bacteria) were removed from downstream analyzes. A 
representative tree of our filtered ASVs was generated using 
FastTree (v.2.1.10; Price et  al., 2010). All analyzes and figure 
generation was performed in R (v.3.6.1; R Core Team, 2017). Beta 
diversity metrics were performed on PhILR (Silverman et  al., 
2017) transformed data and visualized as a hierarchical cluster 
dendrogram using ggplot2 (Wickham, 2016) or PCA using the 
auto plot function in ggbio (Yin et al., 2012). To determine which 
taxa might account for the observed variation in our beta diversity 
plots using a different metric we also generated a NMDS biplot 
based on a Bray–Curtis dissimilarity matrix using phyloseq 
(McMurdie and Holmes, 2013). We next calculated the impact of 
season, sampling site temperature, insect presence, BMI, and sex 
on the microbial community with PERMANOVA using the 
adonis function in vegan (v.2.5-6; Oksanen et al., 2019). Finally, 
we  determined the predictive power of different metadata 
categories on the total microbial community using a random 
forest classification model with 10,000 trees or regression model 
with 500 trees with the randomForest (v.4.6–14) and rfUtilities 
(v.2.1-5; Liaw and Wiener, 2002) packages. Conda environment 
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and all processing and analysis scripts are provided at https://
github.com/aemann01/necrobiome and are archived on Zenodo 
(DOI: 10.5281/zenodo.5722411) for analytical reproducibility.

Results

An average of 134,152 (SD ± 66,338) reads were recovered 
across all samples post quality and chimera filtering 
(Supplementary Table 3). No reads in the two negative controls 
passed quality filtering steps and were removed from downstream 
analysis. Very few ASVs were shared across the winter and summer 
samples with 78 and 79% of all detected ASVs unique to that 
seasonal group, respectively (Supplementary Figure 1A). Moreover, 
individuals with no insect activity had the highest proportion of 
unique ASVs as compared to those with insect activity 
(Supplementary Figure 1B), reflecting the dominance of insect-
associated bacteria in affected individuals. We found that season, 
insect activity, sex, BMI, and the temperature at the site of sampling 
were substantial factors in shaping the retrieved microbial 
community. Samples collected in the summer tended to 
be  dominated by Firmicutes, and in particular Clostridium sp., 
while samples collected in the winter tended to be dominated by 
either Firmicutes or Proteobacteria, the proportion of which largely 
depends on insect activity (Figure 2C). If insects were present, the 
samples were predominantly composed of bacteria belonging to the 
Ignatzschineria genus. In fact, samples with insect activity had 
higher levels of Proteobacteria, independent of season or surface 
temperature, though this effect is more apparent in the winter 
samples, likely due to lower starting microbial diversity. BMI 
correlated with Corynebacterium, Enterococcus, and Clostridium.

While there were no significant differences in alpha diversity 
between winter and summer samples as measured by both the 
number of observed ASVs and Shannon diversity (p = 0.99, 
Supplementary Figure  2), season was a significant factor in 
shaping the full microbial community by PERMANOVA test 
(p = 0.001, R2 = 0.18), as was insect presence (p = 0.001, R2 = 0.23), 
surface temperature (p = 0.001, R2 = 0.27), sex (p = 0.002, R2 = 0.09), 
and decedent BMI (p = 0.001, R2 = 0.21). The lysing matrix used 
had no significant impact on the detected microbial community 
(p = 0.98). As surface temperature and presence of insects is 
correlated with seasonality, we also tested the impact of insects 
and temperature within season. Insect presence was a significant 
factor in shaping the microbial community in both winter 
(p = 0.001, R2 = 0.49) and summer (p = 0.002, R2 = 0.17) as was 
surface temperature (winter: p = 0.011, R2 = 0.19; summer: 
p = 0.001, R2 = 0.25). A random forest classification model 
successfully identified summer samples in 94.12% of cases and 
winter samples in 91.67% of cases. The top discriminant taxa 
between the seasons include two Clostridium spp. (ASV5, ASV10), 
Sporosarcina sp. (ASV2), Corynebacterium sp. (ASV4), and 
Ignatzschineria sp. (ASV29). Insect presence at the sampling site 
was successfully identified in 100% of cases while the absence of 
insects was successfully identified in 87.50% of cases. Interestingly, 
the presence of insects elsewhere on the body but not at the 

sampling site was successfully identified in 80% of cases with the 
remaining 20% of cases misclassified as samples with insects at the 
sampling site. The top taxa that discriminate between the presence 
or absence of insects were Ignatzschineria sp. (ASV3), Providencia 
sp. (ASV103), two Clostridium spp. (ASV34, ASV57), and 
Lactobacillus sp. (ASV71). A hierarchical clustering dendrogram 
of beta diversity metrics across samples illustrates the impact of 
season, insect activity, and surface temperature on the microbial 
community (Figures  2A,B). Ignatzschineria, Providencia, 
Clostridium, and Lactobacillus are known to be associated with 
blow flies (Tomberlin et al., 2017).

Along with environmental effects on the microbial 
community, we  found that duplicate swabs from the same 
individual may in some cases produce markedly different results 
(Figure 3). This effect is moderately correlated with the length of 
time that an individual has been deposited in the field, with longer 
exposed individuals having higher maximum distances between 
swabs (R2 = 0.65, p = 0.004; Supplementary Figure 3). The highest 
maximum distance between swabs collected from the same nare 
of the same individual was 26.04 (D38-2018) and the lowest at 
2.39 (D09-2019; Supplementary Table  4). A biplot of phyla 
importance along the y axis of a NMDS plot illustrates that much 
of the observed variation across individual swabs is due to a 
compositional shift from Firmicutes to Proteobacteria and 
Actinobacteria (Figure  4). Nares of older remains tended to 
be  drier and results could reflect differences in surface and 
subsurface taxa that were removed sequentially among replicate 
swabs in this situation. Whereas younger remains were often full 
of maggots in what amounted to an aqueous environment where 
microbes would be expected to be more evenly mixed.

Finally, we found that specific bacterial genera had higher or 
lower relative abundance across different temperature scales, 
consistent with basic expectations in thermal biology and 
microbiology research (Zeikus, 1979; Angilletta, 2009). These 
expectations include decomposition systems (Iancu et al., 2018) 
where different studies reported groups of decomposer bacteria 
that exhibited lower limits of ~10°C (Proteobacteria, 
Actinobacteria), 0°C (Proteobacteria, Firmicutes, Bacteroidetes), 
and even some Verrucomicrobia able to tolerate temperatures 
below −10°C. For example, in our results, ASVs assigned to 
Clostridium in this dataset are found at higher abundance at 
temperatures above 38°C at the site of sampling (Figure 5A) while 
those assigned to Ignatzschineria are typically found at lower 
temperatures (Figure 5B). Interestingly, some ASVs have a multi-
modal distribution across the temperature gradient (e.g., 
Ignatzschineria ASV3). The closest match to this ASV in the NCBI 
nucleotide database is Ignatzschineria ureiclastica or 
Ignatzschineria larvae, both of which are known symbionts 
isolated from the digestive tract of multiple species of flesh files 
(Sarcophagidae; Gupta et al., 2011). Interestingly, ASV3 was the 
taxon predictive of insect association in the random forest models, 
so the bimodal distribution may be  associated with different 
thermal preferences of winter/summer flies that are in association 
with the same Ignatzschineria taxon. Similarly, while 
Ignatzschineria ASV1 is most highly abundant between 33°C and 
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36°C, it can also be  found at lower abundance at very low 
temperatures (e.g., 25°C) and higher (e.g., 39°C; Figure 5B).

Given the host of factors associated with PMI estimation, 
we compared random forest models informed of, or naive to, 
the factors described above (temperature, BMI, etc) to predict 
the number of days a donor had been in the field. Our 
informed model found that PMI explained 25.06% of the total 
variation with insect presence and temperature at the site of 
sampling having more predictive importance than any 
bacterial ASV as measured by the percent increase in 
MSE. Our naive model explained only 15.62% of the total 
variation with an ASV assigned to the environmental genera 
Gordonia and insect associated Ignatzschineria having the 

highest predictive power (Supplementary Figure  4). 
Importantly, the ASV assigned to Ignatzschineria (ASV3) is 
the same that was important for our random forest 
classification model in discriminating insect presence. Its 
importance also plummets when insect presence itself is 
included in the model, suggesting that the metadata 
observation of insects or the bacterial taxon are useful in 
identifying decomposition events with and without insects - 
which could be  useful in establishing unobserved insect 
colonization or confirming when it was suspected. While 
important in our informed model using other host or 
environmental factors, it is much less so than when no 
metadata are considered (Supplemental Figure 4A).

A B C

FIGURE 2

Local clustering of samples by season, surface temperature, and presence of insects. (A) Hierarchical cluster dendrogram of PhILR transformed 
beta diversity. Each branch tip represents a single sample. Colors on branches indicate whether the sample was collected in the summer (green) 
or winter (purple). Asterisks (*) at tips indicate that insects were present at the time of sampling. Gray asterisks denote samples where insects were 
present but not at the sampling site (nostril). Black asterisks indicate samples where insects were in the nares. (B) Surface temperature at time of 
sampling as measured by thermal imaging corresponding. Two samples had no recorded temperature and were thus left blank. (C) Relative 
abundance of taxa at the phylum level for each sample.
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We also applied quantitative PCR (qPCR) to assess the 
absolute abundance of bacterial taxonomic groups using 
previously published, taxon-specific primer sets for the phyla 
Actinobacteria, Firmicutes, Bacteroidetes, and the order 
Gammaproteobacteria (Yang et al., 2015). Total combined copy 
numbers detected for the four taxa ranged from 32,714 to 
735,150 in summer for samples in the field less than 25 d, and 
from 2,339 to 29,107 copies for samples in the field from 67 to 
218d. The same trend held true for winter samples, with copy 
number values ranging from 55,572 to 6,305,783 for samples in 
the field from 12 to 35d, and from 1,144 to 3,253 copies per sample 
for those in the field from 111 to 272d (Supplementary Table 5). 
The results support the conclusion that increased time in the field 
leads to substantially reduced bacterial load over time, possibly 
from decomposition and subsequent mummification.

Although the semi-quantitative 16S rRNA gene 
metabarcoding results revealed substantial differences in the 
relative abundance of ASVs between seasonal samples, we posited 
that higher taxonomic levels might be more resistant to seasonal 
variation and thus useful for PMI estimation. To address this, 

we further assessed the taxon-specific qPCR data for changes in 
major bacterial populations over time between seasons. In general, 
over the first 35 days, Firmicutes and Bacteroidetes predominated 
in the population, with Gammaproteobacteria and Actinobacteria 
increasing in abundance and dominating at later stages. However, 
results of qPCR and 16S rRNA sequencing were not in complete 
agreement, particularly for the Gammaproteobacteria primer set, 
which appeared to fail in amplification of Ignatzschineria-
dominated samples associated with winter insects at early time 
points (Supplementary Figure 6).

Discussion

Results from this study illustrate that while the bacterial 
community may provide some information on the PMI and other 
factors of importance for forensic science, disentangling the 
impact of these factors and other environmental, individual, and 
contextual effects remains an ongoing challenge. In the current 
study we  found that many correlated factors, including the 

A B

FIGURE 3

Variation in microbial community across swabs taken from the same individual. (A) PCA plot of PhILR transformed beta diversity metrics. Individual 
swabs are represented as points. Swabs taken from the same individual are connected by a line. (B) Taxonomic composition differences across 
swabs taken from the same individual at the same sampling point. Corresponding samples are indicated on the PCA plot with an asterisk.
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temperature of the site of sampling, the presence of insects, 
decedent BMI, and sex influence the microbial community to 
varying degrees in different seasons, with temperature and insect 
presence having the largest overall effect on the community 
structure in the summer and winter, respectively. Importantly, 
however, multiple samples from the same individual at the same 
sampling site may result in substantial differences in the observed 
microbial community. While the extent of this effect is moderately 
correlated to the length of time that the individual had been in the 
environment, it may also be  a signal of the degree of 
mummification of the nares in later stages of decomposition 

and  reduced community cohesion at later time points 
(Supplementary Figure 6). Moreover, any diagnostic community 
level patterns are likely to be concealed in individuals with active 
insect activity. In the current study, insect-associated bacteria 
dominated the observed microbial community in individuals with 
active insect activity at the site of sampling, an effect that is more 
profound in the winter where insect presence accounts for nearly 
50% of all of the observed variation in the microbial communities. 
The homogenizing effect of insects on the microbial community 
can also be seen in significantly lower beta dispersal in individuals 
(p = 0.001) with active insect activity, even if the insect activity is 

FIGURE 4

Taxonomic shift across different samples in summer and winter. Variation across samples is primarily driven by a shift in specific phyla. The plot on 
the right illustrates beta diversity across individual swabs. Plot on the left is identical to the one on the right but instead of samples, ASVs colored 
by phylum are plotted.
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not at the site of sampling (Supplementary Figure  7). One 
Ignatzschineria taxon (ASV3) is highly predictive of this condition.

Beyond shifts in diversity at the community level, the effects of 
thermal variation among the different species in a microbiome 
suggests the need for more detailed information regarding the 
biology of (at least) the most important marker taxa. To highlight 
this concept, it is worth considering how thermally adjusted 
estimates of insect age are implemented in forensic entomology. In 
that discipline, when conducted optimally (there is heterogeneity in 
knowledge for all forensically important taxa), reference data are 
collected on the development of a single species across a range of 
temperatures (e.g., Grzywacz, 2019). From the thermal response 
curve, a lower thermal limit can be  extrapolated for a linear 
accumulated degree model or a curvilinear relationship between 
temperature and development time can be estimated. Therefore, 
when that species is collected as evidence investigators know if the 
ambient conditions of the case line up with linear expectations of 
growth with respect to temperature and if case conditions may 
require either a curvilinear model or if estimates should not 
be made with the evidentiary species because linear assumptions are 
violated. In extreme cases, temperatures may have exceeded or been 
below the thermal range that supports the biology of the insect in 
question (see Wells, 2019 and Rusch et al., 2020). Thus, in some 
cases where an insect taxon is present an estimate of age can 
be made with a linear accumulated degree model that adjusts for 
ambient temperature, while in other cases a curvilinear model may 
be more appropriate, and in others extreme caution should be taken 
because the thermal limits of the organism in question have been 
encountered with unknown impacts on predictive ability. In this 

way species-specific estimates of insect age are made with species-
specific development data and are considered limited by the 
assumptions made in the analysis (Tarone and Sanford, 2017). 
However, this strategy is not how thermally adjusted estimates are 
made in forensic microbiology, as noted above. Limited information 
regarding when assumptions of forensic microbiology are 
appropriate for casework restricts the ability to extrapolate from 
databases to casework and predicts that error in PMI estimates with 
microbiology will persist until such an accounting of these factors 
can be made. Such an accounting will require knowledge of the taxa 
restricted by such environmental factors.

In summary, while the microbial community may 
be informative of several processes of interest to forensic sciences, 
in practice many of these patterns may be obfuscated or skewed 
by a variety of (often correlated) factors including the local 
environment (e.g., temperature at the site of sampling, presence of 
insects) or individual dynamics (e.g., sex or BMI). Given these 
complicating factors, some have advocated for the evaluation of 
community-level metrics to avoid some of these issues in the 
context of target taxon analyzes. However, this work indicates that 
these diversity metrics are not free of potential bias as the presence 
of insects has its own effects on community diversity. Thus, several 
aspects of this type of endeavor still need to be assessed. It remains 
unclear whether community or species level evaluations (or both, 
such as including Ignatzschineria to determine probability of 
insect presence, and diversity to evaluate condition specific 
decomposition) of post-mortem remains will be most informative 
in casework and activity in this area should be  continued. 
However, a more rarely considered dimension to this kind of work 

A B

FIGURE 5

Thermally restricted ASVs in two genera. (A) Average relative abundance and standard deviation of the most abundant ASVs assigned to 
Clostridium by temperature at the site of sampling. (B) Average relative abundance and standard deviation of the most abundant ASVs assigned to 
Ignatzschineria by temperature at the site of sampling.
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(at either the community or species levels) is that of mechanism. 
The picture painted by this, and other similar projects, indicates 
that future work should seek to more clearly understand the 
mechanisms underpinning microbial decomposition of human 
and animal remains, such as thermal restrictions on microbial 
taxa, in order to most effectively limit bias from assessments of 
microbial evidence in forensic casework.
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SUPPLEMENTARY FIGURE 1

Shared ASVs across season and insect presence or absence. (A) Upset plot 
of the number of shared ASVs between individuals sampled in the summer 
versus the winter. Few ASVs are shared across groups with the majority (78 
and 79%, respectively) only found in one season group. (B) Upset plot of 
the number of shared ASVs between individuals with insect activity at the 
point of sampling (y), those with insect activity elsewhere on the body (p) 
and those without insect activity (n). Individuals with no insect activity have 
a much higher proportion of unique ASVs, indicating the presence of 
insects has a dampening effect on overall diversity.

SUPPLEMENTARY FIGURE 2

No significant difference between alpha diversity across season or insect 
presence. (A) Observed number of ASVs and Shannon diversity in 
summer and winter samples. (B) Observed number of ASVs and Shannon 
diversity in samples with insect activity at the site of sampling, insect 
activity elsewhere on the body, or no insect activity.

SUPPLEMENTARY FIGURE 3

Correlation between days in field and maximum distance between swabs 
from the same individual. Correlation between the maximum distance 
between beta diversity metrics from different swabs from the same 
individual. Maximum distance is defined as the difference of the 
minimum and maximum beta diversity score within a single individual. 
Individuals who had been placed in the field for a longer time had higher 
maximum distance than those that were more recently placed in the field 
(R2 = 0.65, p = 0.004).

SUPPLEMENTARY FIGURE 4

(A) Factors contributing the highest percent increase of MSE in a 
metadata informed random forest regression model for PMI. 
(B) Bacterial taxa contributing the highest percent increase of MSE in a 
metadata naive random forest regression model for PMI. Red dots 
highlight metadata variables of importance, black dots are ASVs found 
in both models.

SUPPLEMENTARY FIGURE 5

Lower beta dispersal in individuals with active insect activity. Individuals 
with no active insect activity have higher median beta dispersal than 
those with active insect activity (p = 0.001). n, no insect activity, p, 
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presence of insects on the remains but not at sample site, y, insects 
present at sample site.
SUPPLEMENTARY FIGURE 6

Increased alpha diversity and decreased community cohesion in later 
stages of decomposition. (A) Increase in alpha diversity (Observed ASVs & 
Shannon diversity) over time since placement in the field. (B) Changes in 
beta diversity by the number of days since placement in the field.
SUPPLEMENTARY FIGURE 7

Percent abundance results of four phyla interrogated using qPCR 
and sequencing in two seasons. The relative abundance of 

Actinobacteria, Bacteroidetes, Firmicutes, and Gammaproteobacteria 
were measured at different times of decomposition using 
sequencing and qPCR. Results were compared for concordance and 
ability to determine post-mortem interval in summer and winter 
samples. Using qPCR, PMI is best identified using presence of 
Firmicutes and Bacteroidetes as detectors of early timepoints, and 
Gammaproteobacteria and Actinobacteria and indicators of later 
timepoints. Results between sequencing and qPCR varied in the 
winter samples due to the qPCR’s inability to detect early presence 
of Gammaproteobacteria.
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